
;o—A036 398 NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF BIOSTATISTICS — FIG 12/1 
—

NONPARAMETRIC TESTS FOR MULTIPLE REGRESSION UNDER PROGRESSIVE C——E TCCU )
1976 H MAJUMOAR, P K SEN AF—AFOSR— 2 736—713

UNCLASSIFIED A FO SR— TR— 77—0105 NL

Tn__________ml
t1 a



I ~J vv~=~=
_ _ _  

2.2
3 6

LI ~ IIlII~
III~I~~I .25 Illlli~ Dll~

\ R~ SO LU 1IO N f I S t  l i S t ’

‘1161 Al III ~ , ~~~~~~~~~~~ A



r

~ IC TLSTS ~~~ ~ULT 1PL !i R GPL SS 1ON~uN~
)
~r 1 i ~C)GR L~ Sl\ ’E C .NS ORI ~~~ ~~~~~~~~~~~~~~~~~~~~ 1 ,

HJ~~~)Y~’;’ ‘h :irn ’ar a~ d ~r an dh Kumar Sen
U n i v c r s i t  of N r t l i  Car o l ina , Chapel lii  i i

ABSTRACT

14:or continuous observations from time-sequential studies , suitable

~~~ Cra:~~r-vcn Mises and Kolmogorov-S~nirr~ov type (nonpara~etric) statistics

(based on linear rank statistics) for testing hypotheses on some multi-

ple regression models are proposed and stud ied. Asymptotic theory of

these tests is provided for both the null and (local) alternative hypo-

theses situations and is based on the weak convergence of suitable rank

order processt~s (on the D[O,l] space) to certain functions of Brown-

ian motion;. Bahadur efficiency results are also presented . Emp ir ical

values of the percentile points of the null distTibutions of the pro-

posed test statistics , obtained through simulation studies , are also

provided
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1. INTRODUCTION

in long itudinal (time-sequential) studies relating to clincial

trials and life testing problems , the experimenter sets out to plan

beforehand as to the maxim th a number of responses to be observed or the

maximum duration of the experimentation . As the exper iment  is continu-

ously observed over time , even with th i s  restricted desi gn , the experi-

menter has the option of reviewing the outcome as the experiment pro-

grosses , enabling him to terminate  the e-xperiment at an intermediate

stage if the cumulative evidence indicated by the data at that stage is

strcng enough to rej ect the nu ll hypothesis and further continuation of

experimentation can nit lead to a different inference. This pseudo- se-

quential test procedure (which is distingui shed from the classical sequen-

tial test) arises from what is called progressive censoring sc zen.s (PCS)

as at the successive censoring time-points (responses or failures), the

test statistics are based on uncensored subjects only. It may be men-

tioned that , for the appl ica t ions  of th i s  procedure , it is not necessary

that one works with a restricted design on ly.

For two-sample location and scale problems as wel l  as the simple

regression model , Ch attcrjee and Sen ( 1973) have devel oped a genera l

class of ( l i nea r )  rank s t a t i s t i c s  incorporated for tes t ing  under PCS.

In the current  i n v e s t i g a t i o n , the i r  theory is extended to the m u l t i p l e

regression problem which includes the multi-samp le location problem as

a special case. Also , a wider class of test statistic s is considered

here . .
.
~~~~~

_ _ _ _ _ _ _  
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Section 2 is devoted to the basic formulation of the  pr oblem . Sec-

tion 3 deals wi th  the development of PCS tests : two d i f f e r e n t  types , v i z . ,

Kolomogorov-Smirnov and Cramer-von Mises, both based on linear rank sta-

tistics, are considered . Sections 4 and S are devoted to the study of

the asymptotic distribution theory of the test statistics under the null

and (loc a l)  conti guous alternative hypotheses. Asymptotic (Bahadur-)

relative efficiency results are presented in Section 6. Section 7 deals

with the simulation study of the null distributions of the proposed test

Statistics. In Section 8, comparison of the propos~d PCS tests with the

fixed-plan censoring modifications of the Kruska l-Wallis test by Basu

(1967) has been made and the scope of applicability of the [“CS tests in

the context of right truncation is d iscussed.

2. PRELIMINARY NOTiONS

Let {x ., i � i } be a sequen ce of indepeudeitt random variables ~r . v . )

with continuous d i s t r ibu t ion  functions (d . f . )  {F 1, i ci), specif ied by

the model

F~(x) = F(x_~0
_
~ ’c~) , - ~~< x 

(~~ , i � ]  (2.1)

where in this conventional multiple regression model , the d.f. F is not

known , 
~~~~
, 

~~

‘ = (~~~~
,. . . ,

~~~~
) are unknown parameters , p(� 1) and {c.’ =

(c
1
.,...,c 1), 

i�1 } is a sequence of (known ) vectors of regression con-

stants. Our concern is to test

H
0
: ~ =O vs. li

i
: ~l~~O , (2.2)

- -~~~~~~~~~~- 
.. 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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(treating ~~ as a nuisance parametcr and without assuming the form of

F to he spec i f ied) , when , in fac t , we have a life testing model , as may

be posed belo w .

For every N(? I), le t ZN1 S ... � ZNN be the ordered random van-

ables corresponding to (X1,. .. ,XN) = ‘(
~~~~ say; by virtue of the assumed

continuity of the F., ties among the observations may be neglected , in

probability. Let 
~N

= (RN1,... ,RNN Y and 
~N

= (SNi,.~~~
,SNN )’ be respec-

t ively the vectors of ranks and t~-rc.~~c of the elements of X~~~~, so

that (tics neglected), RNS . ~
SNR . 

~~j , l~~i~~N, l~~i�N. In
Ni Ni 1

a life testing problem , one typically observes the successive order sta-

tistics {ZNj) along wi th  the corresponding {SNj }, and based on a par t

of the sequence 
~~Nj’ 

SN .; 1 ~ i �N} , the problea is to test for I1
~ 

in

(2.2). The PCS test is a pseudo-sequential procedure where a early terni-

nation of e:~pcrimcntatiori is feasible if observing (ZNI, SNi . l � i�k}

for some k(� N), the accumulated statistical evidence leads to a dcci-

sive conclusion . Our proposed PCS tests arc based or. suitable linear rank

statistics which we introduce in this section . The actual test statistics

will be introduced in the next section .

For every N(� 1), we conceive of a set of scores

genera ted by a score fwictiov~ ~~ {$(u), u c (0 ,1)) in the following way :

aN CENu ] l) = 

~N~°~
: O < u < l  , (2.3)

where [s] ‘deno tes the largest integer S s and

~~~~~~~ ~~ - ~ ( u ) ) 2 du 0 . (2.4)



-‘ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

Fur ther , ~(u) is assumed to be expressible as the diffe rence of two

[41
(u) and ~2(u)] non-decreasing and square integrable ( inside I

[0,1]) functions. Note that (2.4) holds , in particular , when

aN(i) E4 (UN.) or ~(i/(N+l)) , l � i � N  , (2.5)

where UN1 
< . . .  <U~1,~ are the ordered random var iables of a sample of size

N from the rectangular [0,1] d.f. In order to simplify the notations ,

in the sequal , we let

~~~~
= f u ~~u = 0 , A~ J 2 ~~~d~~~~

2 
= 

J
~~

2(u)du = 1 , (2.6)

= ~ ~~~1~~ (i) = 0 and 
~~~~~

= (N-l) 
l [~~

(i)
~~N

]
2
= 1 , N � 2  . (2.7)

Now , at the k -tb  stage , the observable random variables are {Z N i .

SNi; l� i�k} , and based on these , we define

‘N,k 
= (T ,...,T

~~L)’
, (lsk�N ) 

.

by lett ing

~~,k~~~i=1~~S •~~~
)~~ (1)+ ~~ =k÷1~~s ~~~~~~~~~~~~~~~~~~~~~~~Ni 

(2.9)

where c = N Y .  c. and
—N i=1—i

(N_ kY ’
~~ _ k+l aN (i)  , l S k S N - 1

a~,(k) = 
- (2.10)

0 , k = 0, N

and , conventionally, we let 
‘N 0

= Q
~ 

Note that ‘N N 1 ‘NM =1N’ where
—
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= 
1
(
~SN~~~~

)a
N C1) 

= 
~~~l

(c. -
~~

)a N (RN.) . (2.11)

Actually, if we let

aN (i)  , l~’isk
bN k~ ’~ 

= k = 0,1,... ,N , (2.12)
a~ (k) , k< i�N

then , we may rewrite 
‘N k  as

= 
~~ l (~j

-
~~

)b N k (~~j) , k = 0,1,... ,N . (2. 13)

Note that by (2.7), (2.10) and (2.12), for every 1 � k � q � N ,

(N
~
1Y1Y.

~~lbN k ( i)b N q (1) (N-l) ’{1.~~1
a
~

(i) + (N~ k ) [a ~~(k) ] 2}

= A~~- (N~
1Y

~~~ k 1 [a
N(i) -a

,~(k)J
4 (2.14)

= 1- (N~i) }~+l
[aN

(i) - a
~
(k)1

2
=A

~~k 
say ~

where is in k (0�k�N ) and A~~0
=0 , AN ,N.1~~

AN ,N ~~N
1

Let us also deno te

= 

~~~~~~~~~~~~~~~~ 
= ((C Nj~

))
j bl 

(2.15)

and assume tha t the re exists a pos iti ve number N 0, such that

is positive-definite (p.d.), V N � N
Ø 

. (2.16)

We may remark that under 11
0 

in (2.2), 
~N

= 
~~Nl’ 

.,ZNN)’ and

(and 
~~ 

are stochas tical ly  independen t; ~~ (a nd 
~~ 

assumes

all possible permutations of (1,... ,N) with the equal probabili ty ( N t )~~~.

Hence, from (2.13)-(2. 15), we obtain by some routine computations tha t

_ _ _  _ _ _  _ _ _ _  _ _ _
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E(I
~ k i lf o) = Q O � k � N  ; (2.17)

~~~~~~~~~~ 
= AN ,kAq -~N 

O � k , q� N  , (2.18)

where a A b  = m i n ( a ,b) .  F ina l ly ,  we define

0 , k = O ,

k 
= 1 (2.19)

~
1N ,k~N ~-N,k~ 

k = 1 ,...,N

Our proposed tests (under PCS) are based on the partial sequence

CLN k :.0�k�r} (2.20)

where r is any pre-assigned integer , such that

as N~-~~ . (2.21)

In real ity, mostly ~ is less than one.

3. PCS RAN K ORDER TESTS FOR NO REGRESSION

For every N � r � l , we introduce a sequence f
~~ ,r

(t)
~ 

tc I) of

interger-valued , non-decreasing and right-continuous functions, where

kN,r
(t) = iuax{k: A

~ k
stA

N 
} t e l  • (3.1)

and A
~~k 

i s def ined by (2.14). Consider then the process 
~N r  = {YN r (t)

~

t I) by letting

YN r (t) 
= A

~
’
rLN k  (t)  ~ (3.2)

Thus, 
~
‘
N ,r 

belongs to the space D[O ,l], endowed with the Sko rokhod J
1 -

topology. We propose the following two test statist ics:
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(i) Ko1m o~orov-Smi rnov (KS-) type s t a t i s t i c s .  ~c def ine

= ~~PiY (t)~N ,r tcl N,r

O r ~~~~ r~N ,k~ 
(3.3)

- A 1 f max 
~~

i 
C 1T ½

’
~.- N ,rlO�k�r ~-N , k~~ -N ,k~ f

Note that , if we let

= ~~~~~~~~~~~~~~~~~~~~~~~~~~ O � k s r  (3.4)

then, by def in it ion ,

= ~ . . .  = K* . (3.5)r~,r N ,r - N ,r N ,r

(ii) Cramer-von Mises (CvM-) typ e s t a ti s t i c s .  Here , we def ine

= 1~ r
(t
~~

t (3.6)

If , we let ~~~~ = O � k � r , and def ine 
-

(3 .7)

O�k� N - 1 , then from (3.1), (3.2), (3.6) and (3.7), we have

=

= 
~~~~~~~~~~~~~~~~~~~~~ 

, (3.8)

where the a lso  depend on N ,r. h ere a lso , if we let
(k)

= 
T = O X;(iN,S~N IN 5

) = ~
\
~
1
Y~~r

(t)dt O s k ~~r , (3.9)

we obta in that

= . . .  = 

~~,r 
(3.1 0)

~

.—

~

‘

~

-.‘--, —~~~~~~~~~~-‘—..---- .. .
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The monotonicity property in (3.5) or (3.10) is then incorporated

in the foriuulation of the fo l lowing  [‘CS tests. For a preassi gned level

of si gnificance c~(O < c~<l), let K
~~rct 

and 
~~,r,a 

be def ined by

Pt
~~~T 

� K
~~r~~lH ø

} � 
~ 

> ~~~~~~~ 
~~~~~~~~~ 

(3.11)

P {
~~~ r �M

~~r~~ i it o
) � c~ 

> P(M
~~r >M

~~r~~ I H 0} . (3.12)

Then , for N items under life testing, as the successive failures are

observed , at each f a i lu re  ZN k ,  we compute ~~~ (or ~~~~~ k � 0 .  If ,

for the f i rs t  time , for some k(� r) is > K~ (or isN , r r~, r ,a N ,r
> 

~~~~~~~ 
experimentation is discontinued followi ng ZNk along with the

rejection of 11ci • If , no such k(� r) exists , experimentation is curtailed

follow ing 2
N along with the acceptance of H0. Note that , by definition ,

and are both function s of 
~N (and £~~~~

. ~~~~~~~~~~~ and hence ,

under l i~ in (2.2), they are distribution-free statistics. Thus . both the

PCS tests based on {K ~~~ } and {~~ k) } are genuinely d is t r ibut ion-free

(under H0) .  Also , by (2.13) , (2.19; , (3.3) and (3.8) , these s ta t i s t i cs

remain invariant under any non-singular transformation on the regression

vectors {~~~ ,
). That is , if we let = 

~~~~~~~ 
~~ 1, where is arbi-

trary and r is non-s ingu la r , and for (2 . 1 ) ,  we rewrite x - 8 0 -~~’c. as

x-y 0 -y ’d., l~~i � N , whe re y ’ = ~‘1’~~ and = 
~~~~~~~~~~~~~~~~ 

then repla-

ci ng in (2.11), (2.13) and (2.19), the c
1 

by 
~~

. and denoting the result-

1mg s t a t i s t i c s  b y’ LN k ,  we have LN k  = L
N k~ V k � O  and I” (non-singu-

lar) . Since , in many cases ( v i z . ,  the m u l t i p s am p i c  location problem ) , the

and 8 in (2.1) arc not unique ly de f ined , this invariance is rather
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important and it eliminates the arbitrariness of the choice of the £~
Thus, the proposed [‘CS tests are invar ian t , d i s t r i bu t ion - free tes t s .  For

sma l l va l ues of N , the exact null distribution of K.* or canN ,r
be derived by direct  enumerations of the exact d i s t r ibu t ion  of ~~ (or

over the N! equally likely permutations of (1 ,... ,N) giving rise

to N [r] equa l l y  l ike ly rea l i z a tions of 
~~~~~~~~~~~ 

from (l,...,N ) .

The task becomes pro~’ihitively laborious as r (and hence , N) increases;

for this reason , we take recourse to the asymptotic distribution in the

next section . -

4. ASYMPTOTIC NULL DISTRIBUTION THEORY

To study the asymptotic distributions of K
~~r 

and M
~~r 

(both of

which are functiorials of the process 
~N ,r’ 

defined in (3.1)-(3.2)),

first, We consider the weak convergence of C’
~
’
N,r
} to appropriate func-

tionals of Broi~.ian motions. Let I’!. = {W . ( t ) , t e l ) , j = l ,...,p be 
~

independen t cop ies of standard Browrtian motions on I, and define

Y = {Y(t), t € I) by l e t t ing

Y(t) = 
[1

W~ (t~~ , t e l  . (4.1)

Then , Y belongs to the space C[O ,l] with probability 1. At this

stage , we introduce the following (Noether-typo) condition:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 . (4 .2)

Then , we have the f o l l o w i n g
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Theo r em 4 . 1  . II~ in (2.2) , (2 . 2l~ , (4.2) and t7:c ~~cw-~ t~on~

rr~de on t~~.’ ~~~~ ~r: ~~~ ~on 2, cz~ N 
-
~

~N ,r 
~ Y in the J 1- toiolca ~i ~u D [0 , l]  . (4. 3)

~Ve have notic ed in the last Fection that the LN k  (and hence ,

~N , r~ 
r ( r ~a i n  invariant under any non—singular transformation on the c..

Thus, under (2.16), there exists a non-singular matrix such that

~N~N~N ~~ = .Diag(l ,... ,l) : (4 .4 )

Let then

— 
N N

I �I SN , so that = 0, ~~ci~~! = 1 . (4.5)

Further , in (2.13), replacing -

~~~~~~ 

by 
~~~~

. ,  I S i �N , the resulting vec-

tor is d~’notcd by TN k  for k = O ,1 ,... ,N.  Then , by (2.19), (4.4) and

(4.5), we have

LN,k 
= (

~ ,k!N ,b r , for k= 0,1 ,...,N . (4 . 6)

Def ini ng {k N r (t)~ 
tel ) by (3.1), we introduce a p-variate sto-

chastic process 
~N ,r 

= 
N,r

(t)
~ 

tel ) {(W~
’
~ (t),... ,W~~~(t) ) ’ , t I)

by letting

~N,r
(t) = A r N k  (t)’ 

te l . (4 .7)

Then , by (3.2) , (4.6) and (4. 7) , we obtain that

YN r (t ) = (
~~N r (

t))1t [
~N r (t)fl~ tc I . (4.8)

Hen ce, if we let ~ ft’.’1~
t),... ,W (t))’, t e l )  where the W . are
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defined prior t (4 .1), then to prove (4.3), it suffices to show that

~~ ~~~ ~~~~~~~~~~~~~ on D[ O , l~ , (4. 9)

and for this , we need to show that (a) the finite-dimensional distribu-

tions (f.d.d.) of 
~~~~~ 

converge to those of W and (b) 
~~~~~ 

15

tight.

Note that  under the assumed regular i ty  condi t ions  on the scores , by

Lemma 4.3 of Chatterjee and Sen (1973) and our (3.7),

O�k�r A~ 0 as N . (4.10)

(k
N .(t))As a consequence , 1im~,~ ~~~~~ = t for every t be1~nging to Eo,i].

Hence, if for q(� 1) and OS t1 
< ... < t

q 
� l~ ,~~ 

= (t
1, . . . ~tq)

’
~ then

by (4.4), (4.5), (2.17) and (2.18), we have on letting 
~N r

(t) =

[~~~~~(t1),. ~~
‘
~ ,r

(t
q)1 

that

E
~N r (~.

) = Q  and 
~~~~~~~~~ 

-‘- ~ ((t3
At~ ))  (4.11)

where 
~~ [ 1 stands for the dispersion matrix (of order pq X pq) and ®

for the Kronecker product. Defining ~~~ = [~
‘(t1
),. . .,W ’(t )], it fol-

lows by routine steps that

E~ (t) = 0 and V[W(t)] =1  0 ((t .At~ ))  . (4 .12)

Thus , to prove the convergence of f.d.d.’s of 
~~~~~ 

to those of we

need to show on ly  that for any given q(? 1) and ~~~~
= (t

1~~ ••~ t
q

)’~ 
~
‘
N ,r~~-~

is a sy m [ ) t o t i c a l ly  n o r m a l .  W r i t i n g  

~~~~~~~~~~ — - — ~~~~~~~~~~ -—~~~~~~~———.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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kN r W = (k N r (t l ) J
~ ~

k N r (t q
) ) ’ = (k 1,... ~kq)

’ (4.13)

and noting (4.7) and (4.10), it suffices to show that (1
~~ k ‘~~ “N k‘ ‘ 1  ‘ q

has asymptotically a muitinormal distribution . We consider the ro l l ed

out vector

q 
= 

~~~~~~~~~~~~~~ ‘ • • •  ,~~~~
l
,.. ~~~~~~~~~~~~~~~~ (4. 14)

and for a non-nu l l  g = (g 11,... ,g 1,... ~jq’. ~~pq )~ consider the

linear compound

U~ (g) = 
~
‘
~!N,q 

= 

~i=1 ~rn= l L mSNj
d1N (1l (4. 15)

where , by virtue of (2.13), (4.5) and (4 .15),

15 iS

dN
(i) = [~~~l~~~l~~ .]n \(i) ~~~~~~~~~~~~~~~~ ~~

aN(v)] (4.16)

for k < i � k  , s= 2 ,...,qs-i S

~~=i~ ?=i~ 1nj
[
~~ V=~~+l N 1  

k
q 
S i �N

Thus, i f  we le t

= 
~m=1

C
mS~ . 

for i = I ,... ,N , (4.17)
N3 hi

we have fi-om (4.1 5)  - ( 4 .  1 ~‘) that

U~ (g) = 

~~=1
fsNj

dN (1) , (4.1 8)

where und er  !(
~ 

in  ( 2 . ) ,  
~N (S N I , . . . , SNN )’ assumes a l l  p o s s i b l e

— -.-- — — , .  ~~~~~. —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~ ~~~~~~~~
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permutations of (1 ,... ,N) with equal probabilit y (N!)~~~. Thus , U~ (g)

is a s imple  l i nea r  ( a n t i - )  rank  s t a t i s t i c .  Note that by assumptions (2 .3 ) —

(2 . 7) and by I wa~ 2 .2 and Theorem 3.2  of 1laj~ k (1961) , the a,~( i )  sa t i s f y

the cond i t ion  Q of Haj~ k (196 1),  i . e . ,

~~~ N~~~~~~O > lim{ max 
N~

1
~~~ l [aN

(i
a
)~~N]2}=O . (4.19)

Since , the g .  are real constants , by (4.16) and (4.19), it fol lows by

some standard steps that

~~~ N~~~~ = 0 =~~ ~~~{J<
. <

m
~~< . <N N

1
~~~l [dN

(i )~aN]2}~ 0 , (4.20)

where = N 1
Y
N 

l
d
N
(
~
) = 0. Also , by (2. 3)~~(2.7) and (4.16), it follows

that for every g~~O , there exists a finite and positive g*, such that

N l [d
N (i)~~~~

2 
-> g* as N -

~ . (4 .2 1)

Thus, the d
N (i) satisf y the condition Q of I1aj~ k (1961). Further , by

(4.17), = 

~~~~~~~~~~~~~~~~ 
(see (4.5)) and by (4.2),

(4.4), (4.5) and (4.17),

1�i�N 0 as N -
~ (4.22)

so that the f~ satisfy the Noether condition . Hence , the asymptotic

norm ali ty of (4.18) follows directly by an appea l to the hIaj~ k (1961)

theorem , and the convergence of f.d.d.’s of 
~~~~~ 

to l~ holds .

Chattcrjce and Sen (1973) have established the ti gh tnes s of 
~N ,r 

~~

the- special case of p= 1. As such , using their result coordinate wise,
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we obtain that for every c> 0 and r~> 0, there exists a 6: 0< 6 < 1

and an in teger  N0, such that for N~~N0 
and each j(=1 ,...,p),

P {sup[ I~~~~~( t ) -~~~~~( s ) j :  0 � s � t S s 4 6 � l J > e p ~~ }< p~~ n . (4. 23)

0r~ the other hand , t l ~N r(t)_~N ,r(5)hj2 i~ 
(t)~ W~~~(s)F, so that

by (4.23),

P{sup[l I)~N,r
(t)_

~ N ,r
(S) I 0< s� t S s+5 S 1) > e} <n, V N N

0 , (4.24)

while 
~N J .(0) Q with probability ~l (by definition) . Hence, the proof

of the ti ghtness of 
~~~~~ 

is comp le te . Q . E . D .

Let now 6N k  be the signma-ficld generated by - (S~~ ‘“
~~‘~ Nk~ ’

0� k� N , 8N O  being the triv ial sigma-field. Then, for every N(� 1),

8
N,k 

is non-decreasing in k. Further , we define N
0 

as in (2.10).

Lemma 4.2. tinder H
0 

in (2.2), {TN k ,  6N,k’ 
O S k S N }  is a mart inqa? c

for every N(� 1), 
~~N ,k ’ 5N,k’ 0�k�N} ir a subrnartingale.

Proof. Under 1-b in (2.2), by Lemma 4.1 of Chatterjee and Sen (1973), it

follows directly that for each j (= 1 ,... ,p),

= ~~~~ a.e. for every k: 05k SN-i , (4.25)

and hence , E(T 5 . j = I n.e., V 0� k SN-I. The same is true
N,k+l ~,k N ,k

for ‘N ~~~• Further  by (2.13), (2.15), (2.16) and (2 .19). LN k

the Eucl id ean  norm) is convex in 1N k ’  and h ence , the martingale pro-

perty of 
~IN k ~~ 

along w i t h  the conditiona l form of the Jensen inequa -

l it y y ie lds  the sul .n .1r t in :~tle property of {LN k }. 
~~~~~ 

- . ~~~~~~~~~- 
-
-- --~~~~ - -~~~-~~~~~~~ -~~~~~~~~~~~~~ ,.- . ,- - _ _ _ _
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For every t: 0< t < 1 , le t us def in e now

ft ~ff l
v(t) = J ~~(u)du 4 (1—t) ~t~i)dti J , (4.26)

ti t

so that  v~ t)  is in te (0,1), v(0) = v ( t )  = 0 and v(l) =

v( t )  = = 1.

Lemma_4.3 .  ~h-w1cr ( 2 . 3 ) - ( 2 . 7 ) ,  k/N -
~~ t: t e [0 , 1] insures that

A
~~ k = (N

~
l)
~~~~~l

b
~~k
(i) v(t) as N • (4.27)

whc.re the b
N,k

(i) are d- ’~”~ncJ in (2.12).

The proof follows along the lines of the proof of Lejnma 4.2 and

Theorem 4.2 of Chatterjec and Sen (1973), and hence , is omitted .

Let us iiow introduce the f o l l o w i n g :

= 
~~çlY( t)I 

= 

~ 1W
~(t)1 (4.28)

0 
= J Y

2
(t)dt = 

1J
W t )d t  = , (4.29)

where the .(=f~W~ (t)dt) arc i.i.d. nonnegative r.v. From Theorem

4.1  we conclude tha t  under the hypothesis of Theorem - 1.1 ,

~ and K..* 2 as N -
~ ~ . (4.30)

N ,r p N , r p

The c h a r a c t e r i s t i c  funct ion (c. f . )  g(0)  of (or any 
~~~~, j � 1)

is g iven by [vi :.  , Dugue ( 1969) J

g(O) = (Cos~~~~~~~~
2 

= 1~~~
{l-2 i0u k

}
~~~

; Uk = _

~~~~~~

_ 

2 ’  k �  1 . (4.31)
k=l ii ( 2 k - i )  

~~~~~~~~~~~ — .--..—- . -— .-~~~~~~~ . - - , - , . — -~~~~~~~~~~~~
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Therefore, the c.f. g~ (O) of is given by

g°(0) = [g(0)]P = 2 .
~~ yP/2 (4 . 32)

p k=1

Note that  if (Ii., 5� i} be a squence of i.i.d.r.v. where IJ~ has the

central chi-square d i s t r i b u t i o n  w i t h  p degrees of freedom , then for

every c,

E{exp [itcU . ])  = [1-2 i tc ]~~~
”2 , (4.33)

so that from (4.32) and (4.33), we have

a,
O V  2wp = 

~k=l
14 (_k~ I) }uk , (4.34)

where stands for the eçuality of distributions. From (4.30) and

(4 .34) , we conclude that  under II
~~

, as N

~ ~:=1 (4 1~
2 (2 1)

2}U
k 

~~~~~~~~~~~ 

say . 

- 

(4 .3 5)

Since, we do not know the distribution of IJ
~ 

in any closed fo rm , we

have obtained (by simulation studies) the emp irical percentile points:

these w i l l  he repo rted in Section 7.

For p= 1 , the distribution of ~
11
~ jW

1
(t)j is well-known and

is given by [viz., Billingsley (p.79; 1968)]

P(~~~� x}  = r ( l ) k
[ 4 ( ( 2 k l ) ) - I ((7k-1)x)] , x~~O , (4.36)

where ~ is the s tandard norma l d . f .  P a r a l l e l  expres s ioii~; t oy p ~ 1 are

not known and remain as c h a l l e n g i n g  prob l ems for p r o h ah i l i s t s .  In Section

~ 

~~~~ . . .~~~~~~~~~~~



-17.

7 , we have also derived , th rou g h s i m u l a t i o n  studies , some emp irical

values for the percentile points of the d. f. of for p . 4.

We may howe ver , note tha t , by definition , {Y(t) , t c I)  is a sub-

m a r t i n g a l e , so that for every x > 0 ,

1(t) > ~} p {suP 0
0Y

2
(t) > ~oX~

} 
(0> 0)

< 
jnf( -Ox

2
1. 0Y2( l )

~~~ {e
-0x

2
(1 26)-P12} (4 .37)

as Y2 (1) = ~~~1
W~ (1) has the centra l  chi-square d.f. with p degrees

of freedom ; note tha t  the inequality in (4.37) is based on the Kolmogorov

inequality for subninr tingales . For x2 p, the rig ht hand side reduces

to

(c/p)~~~
2xPe

_ 2 X  
(~~~~~ t/ j 7~ 2 1 ~7~Y

’x~e 
~~~ ) . (4.38)

On the other hand , as w � w , we have by (4 .36 ) , for every x > 0 ,

‘ x} � {w~ > x) = 1 - PC w~ ‘ x}

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4 . 39)

(~~ 
4 [ l — ~~(x) ] when x is not s m a l l )

From (4.  3 7 ) — ( 4 . 3 9 )  , we obtain that

,(~~C.)[_ x  log PCu x }J = I , for every p ? 1 . (4.40)

~ 

.—
~~~~

--
. — .- 
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We shall find this result quite useful in Section 6. In passing, we may

remark tha t  in ( 4 . 3 7 ) - ( 4 . 3 8 ) ,  instead of using the Kol iuogorov i n e q u a l i t y ,

we could have used the Doob upc rossir .g i neq u a l i t y  for submartingnles and

obtain the upper hound

~~~{2c
_ 0x 2

l i [ e 9’
~
’2 i( e 0’

~
’m > i~~0X

2
~j}

= ~~~{2e~~ x 2 

1 2 

‘
e 2 0)U

du} (4 .41)

u>-~~ log 2+x

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ vP/2~~c~~’dv}
v> (l-20)[x -~ -]og 2]

For specifi c values of p (viz., p=2) , the right hand side of (4.4 1 )

can be worked out e x p l i c i t l y  and the same is somewhat sharper than (4 .38) .

5. ASYNPTOTIC NON-NULL DISTRIBUTION TI1I~ORY

With the in ten t ion  of studying the (asymptotic) power properties

of the proposed PCS tests , we proceed now to consider the asymptotic non-

nul l d i s t r i bu t ion  of K
~~ r and For fixed a l t e r n a t i v e  hypothesis ,

these d i s t r i b u t i o n s  do not exis t  and we are l e f t  w i t h  the task of study-

ing the rates of convergence of the powers to 1 — as w i l l  be done in the

next section. On the other hand , as is the usual fashion , we may consider

a sequence of local a tern~ tive hypotheses , chosen so carefully that under

such a case , the  a sy m p t o t i c  n o n - n u l l  d i s t r i b u t i ons are proper ly  d e f i n e d

and the powers are bounded away from 1.

Towa rd s the end of Sec t i on  3 , we have observed t ha t  K
~~ r and M

~~ r

are both i n v a r i a n t  under n o n — s i n g u l a r  t r an s  fo rm at  ion ~; on the regress ion

IL. .~~~~~-- -  -~~~~ - .  . .. ~~~~~~~~~~~~~~~~~~~~~~ -- -- .-- _______________
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vectors — hence , we may, without any loss of geucrality, use a canonical

reduction . We assume that there is a triangular array fxN i , 1 s I �N ,

N? i} of rowwise independent  r.y., where for each N ,

P{X N . �x } = F(x-~ 0-~
’c~ .) , l � i  s N  , - ~~< x < ~~ , (5. 1)

where 
~~ 

= ~~~~~~~~~~~~~~~~~ i = 1,. .. ,N, and

= Q and 
~~~~~~~~~ 

= I , (5.2)

and in this case, (4.2) reduces to 
1~ p{l~~~N ~ 1} -~ 0. As before ,

h
o: ~~ = 0 and we frame a sequence [ILN

} of alternat i ve hypo thes es by

letting

11
N (5.l)— (5.2) hold w i t h  $� O . (5.3)

Regarding F in ( 5 .1 ) ,  we assume that  i t  has an absolute ly  cont inuous

density function f wi th  a f i n i t e  Fisher in fo rmat ion

1(f) 
Uf~

(x)/f(x) 2
t1F(x) , where f’(x) = f(x) . (5.4)

In add iti on, we define

= -f’ (F~~ (u))/f(F~~ (x)) , 0< u < 1 , (5.5)

so that f~4
0
(u)du = 0 and f~ [q 0(u)J 2du = 1(f) <~~~ . Also , for s~ (0,1),

we let

c~(u) , 0< u s s  , 
• 1

4 (u) = 1 (S.6)

= (1_sY ’
J 
4(t)dt , s < u < 1 ,

S



— .— .—.-—. 
~~~~~~ 

..—.-—— —
~~~
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and de f ine  4’
0 (u) , 0 <  u < 1 in the same way. Let then for S £ (0.1),

p(s) = 
(J

~~~~(u~~
0 (u) du }/ I~~( f )  = (f ~0(u)~ 0(u)du}/I~ (f) , (5.6)

and fi nally, we define v(s), 0 s 5 1 as in (4. 26) . Then , the fol low-

theorem provides the bases for subsequent results of this section .

Theorem 5.1. Under (5.l)-(5.4) and the’ conditions on the score function

~ assumc-d in Section 2 , 
~N ,r ’ 

defined h1~ (4 .7) [but for the tr i w~~u-

lar array of r. v. ‘s in (5. 1)], converges in Zaw in the J
1 
- topology on

D [0 , 1] to a ~~~~~~~~ Ga: sian funct ion W + p .  whore ~ is defined

before (4.9) and = {E(t), tc i} is given by

p (t) ~p( (tv(~))[I(f)/~~~)]
½ 

, 0 � t � l  . (5.8)

Proof. Let P~ and 
~N 

be respectively the jo int  d . f .  of (X N I , . . .  ,XNN )

under l-1~ and 11N and let 
~~~ 

and be the same for (Z
N1,... ,

ZNk)~
for ksN. Then , by the results of Chapter VI of hl~jek and ~idak (1967),

we concl ude that under (5.l)-(5.4), 
~~~ 

is conti guous to ~~~~ and

this insures that 
~~Nk’ 

k�N ) is also contiguous to 
~~~~ 

ksN}.

Hence , we may proce ed along the l ines of the proof of Theorem 2 of Sen

(19Tha) and show that the ti ghtness of 
~
!N r ’ under 1101 insures the

same under the contiguous alternatives (11.~}. The convergence of f.d.d. ’s

of 
~N,r 

- p to those of ~ also follows by an appeal to conti gui ty

(when {II
N
} holds)  and the c . ir l ier  part  of the  proo f of Theorem ~1.l

along the same line as in Theorem 2 of Sen (1076a) . Q.1~.D. 

- .
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R e c a l l i n g  tha t  S~( ( t )  ( W 1(t) , . . . ,W ( t)) ‘ , t e 1 and p (r) =

(l i 1 (t) , . . . ,~~~~~( ) )  , t 1 , we obtain from (3.3), (3.6), (4.7), (4.8)

and Theorem 5 .1  that under the hypothesis of Theorem 5.1 , (under {II
N

} ),

~ ~~~~~~~~~~~~~~~~~~~~~~~ (5.9)

~ ~~~1J{w~ (t)÷~1~(t)}
2
dt . (5.10)

Note that the p.(t), defined by (5.8), ar c not , in genera], linear func-

tions of t, and as in Section 4 , the exact d i s t r i b u t i o n s  for the r igh t

hand sides of (5.9) and (5.10) are difficult to obtain. As a resu l t , i t

is difficult to draw more indepth conclusions about the relative perfor-

mance of these PCS tests for conti guous alternatives . For this reason , in

the next section , we take recourse to the Bahadar efficiency, where under

(f ixed but) close a l ternat i ves , we have some mean ingfu l  comparisons of

the different test statistics and score functions.

6. BAUADUR A .R.E . or: PCS TESTS

First, parallel to (4.40) ,  we derive a limiting result for the

tail probability of the Cram~r-von Mises type statistics. Note that

by (4.35),

< = ~~~U1 
+ 
~:=2

{4
~~

2
(2 1)

2}U
k 

(6.1)

where each U~ , j  � 1 , has the central ch i -squa re  d i s t r ib u t  ion with p

degrees of freedom , so that for every X > 0,

- —  
- t [ I }~~~~ t T r: - :: ,.~~~ ___ .___
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2 ‘~‘2 — - i i  ..!x2 ~ ‘~/‘-1 ~P(U . > )~ ) (2’’ rp/2) e (x )’ - dx . (6.2)) J
~
2

Some standard analysi- on (6.2) leads us to

lirLI[ -?~ log P(U~ >A 2j1 = 1 , (6.5)

so that from (6.1) and (6.3), we obtain that

liUi SUP
[ 

log p t j ~~>~~2~
J

log P{u
1 
> A

2T2/4~~ = T 2
/4  . (6.4)

On the other hand , by the independence of the

a,

P{~j l 4/ 1~
2 2k~ 1) 2 uk > x2}

= P{cxp[e 1
{4/~r

2(2k~1~~)u~] > cxp[OX~]} (0> 0)

� ~~~{e
0
~~E [exp 0 ~~~l~

4/7i2 (2k_l)2}U
k)}

= inf{ 0\ 2
. y (

OU
k

4 h1h1
~~~~~~~~

l) IIk=l (6.5)

0X 2 
SO/f (~’ l) 2yP ~~2} 

•‘ 2
~ 

- (jr /S-c)X 
TT (1-(,T~~8c)/11 (2k-lY)~~

” (c> 0)
k=1

- P.. 
~~~~ ‘ 2

. {( ( Sc)
] ~~

__

~~~~~~ 

_

~~~~~~~~~~

_

~~} 

2 } _ ~~ X /S+ cX

k?2 n (2k-J)

~1
< [ c ( c f l e x p {- ~~~~ I S +~~Y)  ,

_ _ _ _ _ _ _ _  __ _ _ _ _ _ _ _
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where c( c)  (< 
~~

) depends on ~ (O < c  < i r  /8). Thus , choosing c(> 0)

arb i t ra r i ly-  sma l l , we obta in  from (6 .5)  that

1im~~~lf [  ~~ log P (u~~> x 2
~~ > - 2c , V c(0 <C < 2

/s) , (6.6)

so that from (6.4) and (6.6), we conclude that

~ 
.-

~~~
- log p ui g>x

2
~~ = 11

2
/4  . (6.7)

In some specif ic  cases , the s tochas t ic  convergence of the LN k ,  l~ SN

can be studied for general alternative [viz ., Chattcrjee and Sen (1973) for

the two sample problem]. But , in genera l , it demands extra regularity con-

ditions. Let us assume that X l,... ,XN 
are independent wi th  d . f . ’ s

F1 ,... ,FN and defining C. as in (4.5), we let

F (N) (x) =N
’
~~~1

F~ (x). ~ (N) (x) =N~~~~~1~~ F~ (x). - ~ <x< ~ (6.8)

and defi nin g 
~N 

be (2.15), we assume that

(i) 
~~~ 

N ’CN 
= C and 

~~~ ~ both exist , (6.9)

(i i )  
~~ 

F (N) (x) = F(x) exists for all x (a.e.) , (6.10)

N-~~ 
R (N)~~~ 

= D(x) exists for all x (a.e.) . (6.11)

Let us also define v(t) as in (4.26) and let

rX ( f~
~(x) = I ~(F(y))d~ 1y) - [1-~ (x) }

~~fl(x) 1J ;(~ (x))d1• (~ ) )  , (6 .12)
.1 L x
-a,

~(x) = (T(x))’(T(x)l ,  < x < , (6.13)

~ 

----- - . . ~~.—--- * --- -- . . .
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= 
SUj) 

- (6.14)

rx
~ Cx) = J ~( y ) d v ( F ( y ) ) j / v ( i ~( x ) )  , - < < . (6.15)

Then , a long the l i ne s  of Sect ion 5 of Cha tte r j ee  and Sen (1973, p. 41),

it can be showu b y some s tandard steps that under (2 . 3) -( 2. 6) , (2 .21)  and

(6 . 9) - (6 . 12) , as N -~

-~ ~ * (f~
l

(~~f l/ v
2

(~~) a.s., 
~~~~ 

~
0
(i~~

l
(~)) a.s. (6.16)

L
~~r

/A
~~r ~(~~~~ófl/v (~) a.s. (6.17)

In particular , for the model (2.1), if the have all .boundcd elements

and ~ is close to Q, th en (6.l6)-(6.17) simplify to

K
~~r~~~~~

>

[ (~~iC ) J ( f ) /~~~~~] 2 ~~ 5uP
P

2
( t) } + o ( 1 j~~J J )  , (6.18)

where p ( s )  is de f ined  by (5 .7)  and j~~~ j~ =

~~~~~~~~~ 
(~ t~~

l
~
)[J 

~~~~ T(
~~ 1[J

/v
2
(
~

) J  + o ( II~J I )

= [(~~ C ) J (f )/ \ ) (6) ] [J P
2 (u)dv(u)]/v (~ ) + o (J  I~ I ) 6.19)

L
~~r 

/A~~1 ~~~ -~ -->  ~~~~~~~~~~~~~~~~~~~~~~~~ o(j~~3 JJ )  . (6. 20)

2 2 ~F i n a l l y ,  note t ha t  under hl ü 
in ( .2)  , by Theorem -1 . 1 , L

N , r’N , r 1

and hence (
~~
. 3) •ippl i es 

_

~~~~~~

.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

. ~~~~~~~~~~~ . _ _
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By vi r tue  of Theorem 1 .1 , (-1 .30), ( 4 . 4 0 ) ,  (6 .2 )  (for U 1)

and ( 6 . 1 6) - ( 6 . 17 )  , we are in a p o s i t i o n  to adapt the B ahadur e f f i c i e n c y

resul ts  (viz., Purl and Sen (1971 , i p ~ 122-123) . The Bi~I?E (Bahadur  ARE)

of the Komogorov-Smi rnov type test relative to the terminal test based

~~ 
~~~ 

is g i v e n  by

T 
=

= 
{~~<~~~~l x)1}/~~~~~(~)) 1 (6.21)

where the equality sign holds (among other cases) when ~(x) is non-

decreasing in x. Similarly, the BARE of the Cram~r-von Mises type

test with respect to the terminal test based on L is
N ,r

~~~~ =

r r~ (~s) 
— 1 -,

= L{L R(y)/
~
(F (6))]dv(F~~ ))

j
/v(~)J

[11~/4] . (6.22)

Unlike (6.21), (6.22) may not be greater than or equal to one in all

cases. We shall make more co mment  on it later on. Finally, the BAR1~ of

the Kolmogorov-Sniirnov type with respect to  t h e Cra~i~r—von Mires type is

gi ven by

eK~~l = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (6.23)

An obvious lower h ound for (6.23) is -1/it = 0. 1053. 
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Let us now confine ourselves to local alternatives for which I6.IS)-

(6.20) hold and in this case, the limiting BARE reduces to

= ~~ (Jp
2
~~~dv~~~)/[v(o)p

2(5)} ; (6 .24)

ehi ~~1o~~~~
p2(t))v(~~~~jp

2
(u)dv(u)); (6.25)

e
~~T 

= ~ p2(t~~ /p 2(~) (� 1) . (6.26)

In the context of optimalit; of score functions for PCS rank tests

for simple  reg ression , Chatterjee and Sen (1973) and Sen (1976h) have

studied the optinality of ~
°(u) , def ined t~y (5.5). It fol]ows from

(5.4)-(5.7) that for ~ (upto a scalar constant),

il l 0 -
~ 1 r 1 

0
v(t) = p (t) - 

~J 
[~ t (u) ] du

~ /j  [~~ 
(u)] du , O S t S I , (6.27)

0 ‘0

so that we have from (6.24)-(6.27),

e~ ~F 0.8225

12/it 2 1.2 159

eK T  = I

in this case , we are naturally inclinced t owa rds using the Komogorov-

Sinirnov type tests on the ground of the limiting BARE . h owever , the

picture can he d i f fer e n t  when 4~ ~~~~~~ For example , suppose one uses

the exponca t i 1 score ‘~ (u) = —1—log (1—u) , 0 < u < 1 , ~ hi Ic t e wi d er —

lying d i s t r i b u t i o n  is lo t ~i st i c .  in t h i s  cace , c~~~1 reduces to 15/271
2 

=

-- ,,. ..,--—,-— --



-~~~~~ 
- - --- --~~~~~~

-27-

0.7599, so that the Cramh-von Mises type test appears to have an

edge over the Ko l mogoro v-Smirn ov type te~t. For this example , C
~~T 

=

2ir
2
/IS = 1.3 159 , so that the term inal test is also not as efficient as

the Cran,~r—v oi, M~ sts type test. An oppusite picture holds when one uses

the WI Icoxon scorc-s (viz. , ~ (u) = /I~ (u-l/2) , 0 s u S I) w h i l e  t h e  under-

ly in g d. f. is expon ntial - here C
~l T  

= 2112/35 0. a~ -iO and = 35/2112 =

1.2665. These exanples su~ gcst tha t  whereas the BARE F or c~~~1 may

f luc tua te  quite a bit for different score functions and underlying d.f.’s,

c~ .~, � I remains true under quite genera l conditions , tending to advocate

the use of Komogorov-Snirnov type of PCS tests.

7. SIMULATEI) PERCENTILES OF

NU LL DI STRIB UT J ONS ~M.* AND K*

The distributions of M* and L* have been shown to converge
Nj

weakly to some functionals of the standard Wiener process under the null

hypothesis and to those of th~ drifted Wiener process under conti guous

a1tcrnati~-es , under certain regularity conditions. As we have m e n t i o n e d

in Section -1 , the null distributions of these processes are not available

in workab le  fo rm . We, therefore, derive in this section a few percentile

values of these distributions emp irically through simulation studies.

Consider n independen t ob serv at ions , Y
1
,. . . ,Y from the stan-

dard normal distribut ion . Let

k
Sk 

‘
k ‘ 

1 � k < n
i=l

S0 
= 0 by convention . (7.1)
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We define the stcchast ic  process W = f~
’ (t), tc [0,1]) by letting

W (t) = fl 2S (t) , (7.2)

where n(t) = max{k: kstn }.

We note that the sample process Wn is right continuoes with  the left-

hand limit and hence belongs to the metric space D[O ,1] with the pro-

pe rties

EW (t) = 0

EW2(t) = n~~ [nt] , (7.3)

EW~(t)W (t’) = n~~[n(tAt’)], t , t ’ c [0 , 1]

where [nt] and [n(tAt’)J denote integral parts of nt and ri (tAt’)

respectively.  The maximum jump of the process is gi ven by

l x i  O (v’-~ £~~i)max k n n
— a.s.1�k�n ,—

“ii -

-
~~ 0 a.s., as n -

~ . (7.4)

Consequently,  as n gets large the process W has a continuous sample

path a.s. and has the structure of the standard Brownian motion l ) 1 0 C 0 5 5

w = {w(t), t [0,1]).

Let now [tY. . 
~~~l’ 

~ = 1 ,. . . ,p] be independent random samp les cich

of size n from W(O,1). Then by Donskcr ’s theorem [Billingsley (pp.

68-77; 1963)]
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~~ [
~~Uc~~(k/n)] 2 w*

P n-l• 
n

1 )~ ~ n ”~~ 
~ (7.5)

i= 1 k=O ‘

where W . (k/n) ~~~~ Y.., k = 0 ,...,n and i =  l , . . . ,p  and w~ and

0 j=1
are given by (4.28) and (4.29) respectively.

For purposes of the simulation studies , we have generated the stan-

dard normal deviates by using IBM scientific subroutine GAUSS . The sam-

ple size n has been taken to be 1000 and the empiricall (null) distri-

butions of the two processes have been der ived  throug h 1000 independent

repeti t ions.  For details , see Majumdar (1976). In Table ~1 and Table  2

below, we have furnished a few simulated values of the right tails of

the two d is t r ibut ions .  For p =  1, we have given exact percentile values

of w~ by using the approximation

� 4 ( I -~~( x ) )  , (7 .6)

where c1 (x) is the probabi l i ty  integral  of the s tandard normal  d i s t r i bu -

tion .

TABLE _ I :  S imula ted  va lues  of the n u l l  d i s t r i b u t i o n  of w~ for
- 

selected values of p and ~ p

.01 2. 81 3. 22 3.71 3.~~9

.05 2. 2 4  2.70 3.05 3.31

.10 1.96 2.3S 2 . 7 8  3 .04

*Exac t

-.-

~ 

•~~~~~~~~~~ • •~~~~~ 
-
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TABLE 2: Simulated values of the n u l l  d i s t r i b u t io n  of for
selected values of p and a p

a 1 2 3 4

.01 2.87 4. 06 5 .57 6. 54

.05 
- 

1.66 2.67 3.49

. 10 1.19

8. SOME GENERA L RE~LA~RKS -

As has been mentioned in Section 1, our model (2.1) includes the

multi-sample location model as a special case~ Let X.. 1 � i Sri . be
~J 1  3

i.i.d.r.v. with a continuous d.f. F~ (x). for O � j � p ( � 1)  and let

N=n + ... +n . Rewritino X .=X. , l� i � n  and X.. = X
0 p ~‘ Oi 1 0 1J 

~~~~
1 � I � n~~, I � j S p, and assuming the conventional location model where

F.(x) = F(x-O.), 0 �j S p, we observe that (2.1)  holds  wi th  = 0 .  -

1� j � p ,~ = 0  and c = ... = c  = 0 , c = . . . = c0 0 1 ‘n0 -n0
+1

‘ TI +...+n +1~~~~” =
~~N (O , . . . ,O , 1)’ . The nu l l  hypothesis  U 0 in

0 P-1
(2 .2)  in s u r e s  that  F0 = ... = F .  i~ , we assume tha t  the sample s izes

n0,... ,n satisfy the conditions

~ , N~~n~~= A ~ : 0< X ~~< l , V O � j � p  , (8.1)

then -
~ 

(A 0, .  . . , X ) ’  as N -
~ and , by (2.15), N 1C

N ~ 
-

Ak A 
~~~ — l , so that (2.16) ho lds .  Thus , the proposed PCS rankq ,q-

tests app ly to the m u l t i - s a m p l e  l ocat ion  problem as w e l l .

. •~~~ 
. . . . --
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In order to test homogeneity of k( p+l) samples for right-censored

data (fixed-p lan censoring) , with the smallest r out of N observations

of the combined samp le being considered , Bas u (1967) has s tudied a genera-

l ized version of the Kruskal-Wallis test . The asymptotic chi-square dis-

t r i but ion  of h i s  s t a t i s t i c  (eq iva lent  to our L
~~ r/A~~ r fo~’ h is Part icu-

Jar  model) fol lows read i ly  from our Theorems 4 .1  r ind 5 .1. In h is  scheme ,

early terminat ion of exper imentat ion (prior to the r- th  order s t a t i s t i c)

has not been advocated , w h i l e  in our PCS procedures , th i s  is no problem .

One can use K~ r 
or . The BARE results  of Section 6 suggests that

using K
~~r 

instead of L
~~ r/A~~ I. a l l ows  an early te~~ in ation without

any loss of the asymptoti . c e f f i c i ency .

Suppose now that instead of a preassigned number r of failures ,

the experiment is desi gned to continue at most for a period of y t ime-

units .  Then , r(y) , the number of f a i lu res  occurring in the time-peri od

y, is i t se l f  a (non-negative in teger-valued)  random var iable .  As in

Section 2 of Chatterjee rind Sen (1973), the distribut ion theory of

MN r(y) or 1’N ,r(y) can be developed [under the null hypothesis l1~

in ( 2 . 2 ) ]  under a conditiona l setup , g iven r (y)  Z r .  However , in prac-

t ice , th i s  conditional argument requires some knowled ge on the distribu-

t ion of r(y) so that the st ochas tic  l i m i t  of N~~ r(y)  is f a i r l y  known

in advance of expe r imen ta t ion  (as the same is needed to define

A~ for both the PCS tests) . We may surmoun t t h i s  proble m by work-

ing w it h an upp er  hound f~ r ~
( 1r(y) [al 1owinp~ cktnce fi net nat ion]

whenever feasible. In the Department of Biostatistics , University of

North C a r o l i n a , Ch a pel h i l l , a seven-year  project  on the effect of hig h

- —‘--- • _j~~ -~———--...--—~~~~~~~~ ----.--- • •. —-——-~ -
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choleste rol on the risk of heart attack is under study. Male patients

(over the age 35) are randomly a l l o c a t e d  to e i ther  the control or treat-

ment groups and the surviva l pat t e rn s  of the two groups are being pro-

gressively studied . From independent sources (vi z., U.S. Life tables),

the seven year mortality rate for the particular age-pattern is rough l y

known to he about ]l~~, so that for a sample of size N , an upper (95~
or 99%) confidence limit can be set on the actual number of failures in

this stud y per iod , and wi th  tha t  upper 1imi t , we can set our proposed

PCS tests. This procedure , though a bit conservat ive , performs qu i te

well (in scope as wel l  as in performance) as compared tc some pa rame t r i c

tests based on pa r t i cu la r  forms of f a i l u r e  d i s t r ibu t ion s .
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